About this course
Explore your passion for chemistry and mathematics with our flexible, combined honours integrated master's degree. This challenging course gives you an in-depth understanding of chemistry and also integrates advanced mathematics throughout. You'll gain advanced analytical and statistical skills and have the opportunity to work on a significant independent research project. The skills you develop will help you pursue a rewarding scientific career.
This chemistry with maths degree is taught by academics at the forefront of chemistry research, giving you the opportunity to develop your knowledge of a variety of chemistry applications. These include computational chemistry, nuclear magnetic resonance and drug discovery.
The course's breadth gives you deep knowledge of the fundamentals of chemistry as well as excellent practical lab skills. Mathematics modules will enable you to shape your degree to specialise in the areas that most inspire you.
You’ll use state of the art equipment in our range of laboratories. These include the single crystal diffraction lab, the mass spectrometry lab and a dedicated X-ray crystallography teaching facility.
This degree is accredited by the Royal Society of Chemistry. When you graduate you'll be eligible for full membership status (MRSC).
We regularly review our courses to ensure and improve quality. This course may be revised as a result of this. Any revision will be balanced against the requirement that the student should receive the educational service expected. Find out why, when, and how we might make changes.
Our courses are regulated in England by the Office for Students (OfS).
Learn more about these subject areas
“During school, maths and chemistry were always competing in my mind. When I got to University and met all of the inspiring, ambitious freshers, I decided to go study both.”
Course location
This course is based at Highfield.
Awarding body
This qualification is awarded by the University of Southampton.
Download the Course Description Document
The Course Description Document details your course overview, your course structure and how your course is taught and assessed.
Entry requirements
For Academic year 202425
A-levels
AAB including chemistry and mathematics
A-levels additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
A-levels with Extended Project Qualification
If you are taking an EPQ in addition to 3 A levels, you will receive the following offer in addition to the standard A level offer: ABB including chemistry and mathematics, plus grade A in the EPQ
A-levels contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme, as follows: ABB, including chemistry and mathematics
International Baccalaureate Diploma
Pass, with 34 points overall with 6,6,5 in three Higher Level subjects including chemistry and mathematics (Analysis and Approaches is preferred)
International Baccalaureate contextual offer
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
International Baccalaureate Career Programme (IBCP) statement
Offers will be made on the individual Diploma Course subject(s) and the career-related study qualification. The CP core will not form part of the offer. Where there is a subject pre-requisite(s), applicants will be required to study the subject(s) at Higher Level in the Diploma course subject and/or take a specified unit in the career-related study qualification. Applicants may also be asked to achieve a specific grade in those elements. Please see the University of Southampton International Baccalaureate Career-Related Programme (IBCP) Statement for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
BTEC
D in the BTEC Extended Certificate plus A in A-level chemistry and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
RQF BTEC
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Additional information
A pass in the science Practical is required where it is separately endorsed. Applicants who have not studied A-level chemistry and/or mathematics can apply for the Science Foundation Year. Please visit the Science Foundation Year page for more information.
QCF BTEC
D in the BTEC Subsidiary Diploma plus A in A-level chemistry and A in A-level mathematics.
We will consider the BTEC Diploma if studied alongside A-level chemistry and A-level mathematics.
We will consider the BTEC Extended Diploma if studied alongside A-level chemistry and A-level mathematics.
We are committed to ensuring that all learners with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise a learner’s potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
Access to HE Diploma
Applicants with an Access to HE Diploma should apply for BSc Chemistry
Irish Leaving Certificate
Irish Leaving Certificate (first awarded 2017)
H1 H2 H2 H2 H2 H2 including chemistry and mathematics
Scottish Qualification
Offers will be based on exams being taken at the end of S6. Subjects taken and qualifications achieved in S5 will be reviewed. Careful consideration will be given to an individual’s academic achievement, taking in to account the context and circumstances of their pre-university education.
Please see the University of Southampton’s Curriculum for Excellence Scotland Statement (PDF) for further information. Applicants are advised to contact their Faculty Admissions Office for more information.
Cambridge Pre-U
D3 D3 M2 in three Principal subjects including chemistry and mathematics
Cambridge Pre-U additional information
Cambridge Pre-U's can be used in combination with other qualifications such as A-levels to achieve the equivalent of the typical offer, where D3 can be used in lieu of A-level grade A or grade M2 can be used in lieu of grade B.
Welsh Baccalaureate
AAB from three A-levels including chemistry and mathematics or AA from two A-levels including chemistry and mathematics, and B from the Advanced Welsh Baccalaureate Skills Challenge Certificate
Welsh Baccalaureate additional information
A pass in the science Practical is required where it is separately endorsed. Offers typically exclude General Studies and Critical Thinking.
Welsh Baccalaureate contextual offer
We are committed to ensuring that all applicants with the potential to succeed, regardless of their background, are encouraged to apply to study with us. The additional information gained through contextual data allows us to recognise an applicant's potential to succeed in the context of their background and experience. Applicants who are highlighted in this way will be made an offer which is lower than the typical offer for that programme.
T-Level
Not accepted for this course.
Other requirements
GCSE requirements
Applicants must hold GCSE English language (or GCSE English) (minimum grade 4/C) and mathematics (minimum grade 4/C)
Find the equivalent international qualifications for our entry requirements.
English language requirements
If English isn't your first language, you'll need to complete an International English Language Testing System (IELTS) to demonstrate your competence in English. You'll need all of the following scores as a minimum:
IELTS score requirements
- overall score
- 6.5
- reading
- 6.0
- writing
- 6.0
- speaking
- 6.0
- listening
- 6.0
We accept other English language tests. Find out which English language tests we accept.
You might meet our criteria in other ways if you do not have the qualifications we need. Find out more about:
- our Access to Southampton scheme for students living permanently in the UK (including residential summer school, application support and scholarship)
- skills you might have gained through work or other life experiences (otherwise known as recognition of prior learning)
Find out more about our Admissions Policy.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Course structure
This 4-year degree will provide you with in-depth knowledge and practical training in chemistry with mathematics, and develop your understanding of its impact on modern society.
You'll get a thorough grounding in all aspects of chemistry with a comprehensive set of core modules. You can then shape your degree to suit your interests by choosing from a wide range of optional modules.
In addition, 25% of your degree will be made up of mathematical and statistics study.
Year 1 overview
You'll study a set of core topics that are essential to your developing knowledge, giving you a solid grounding in organic, inorganic and physical chemistry.
Topics include:
- Molecular Structure
- Reactivity
- Thermodynamics
- Kinetics
- Atomic Structure
- Bonding
- Chemistry of the Elements
Mathematics modules focus on calculus and multivariable calculus. You can also choose options from the wider university including physics, biology and languages.
Year 2 overview
You'll study core topics in chemistry such as:
- Organic Reaction Mechanisms and Organic Synthesis
- Atomic and Molecular Interactions, Change and Equilibrium
- Symmetry in Chemistry
- Transition of Metal and Organometallic Compounds
- Bonding Theories of Solid-State Chemistry
In mathematics you can study topics such as Linear Algebra, Probability and Statistics, and Dynamics and Relativity.
You can also choose options that may include:
- Mathematical Methods in Chemistry
- Ethics in Sciences
- Engineering and Technology
- Aquatic Chemistry
- Pharmacology
Year 3 overview
You'll take advanced modules in the core practical and theoretical areas of chemistry such as:
- Pigments and F-block Chemistry
- Natural Product Chemistry
- Electrochemistry, Energy Storage, Pollution Control and Fuel Cells
- Organometallic Chemistry
- DNA and RNA
- UV/visible Spectroscopy and Quadrupolar NMR
- Kinetics of Interface Chemistry (gas/solid, liquid/solid)
In the advanced practical module you'll undertake research-oriented, open-ended experiments which allow you to develop new practical skills, manage your own learning and present your results. You'll choose from mathematics and statistics topics such as:
- Statistical Distribution Theory or Analysis
- Statistical Modelling
- Partial Differential Equations
Year 4 overview
You'll complete an advanced research project in an area of your choice, supervised by a member of academic staff. This involves work in the laboratory, carrying out literature research and writing your dissertation.
You'll be able to select from advanced modules in mathematics or statistics, covering Graph Theory, Statistical Inference, or Advanced Partial Differential Equations.
In semester 2 you can take 3 advanced chemistry taught modules such as:
- Exploring Polymer Chemistry and the Properties
- The Impact of Plastics on Society and the Environment
- Understanding the Behaviour of Atoms and Molecules
- Fundamental Concepts in Electrochemistry
Want more detail? See all the modules in the course.
Modules
The modules outlined provide examples of what you can expect to learn on this degree course based on recent academic teaching. As a research-led University, we undertake a continuous review of our course to ensure quality enhancement and to manage our resources. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand. Find out why, when and how we might make changes.
Year 1 modules
You must study the following modules in year 1:
Analytical Chemistry
Analytical Chemistry is a measurement science consisting of a set of powerful ideas and methods that provide qualitative or quantitative information about the chemical composition of a sample. Analytical measurements are required in a wide range of fields...
Calculus
This module provides a bridge between A-level mathematics and university mathematics. Some of the material will be similar to that in A-level Maths and Further Maths but will be treated in more depth, and some of the material will be new. Topics of study ...
Fundamentals of Kinetics and Quantum Mechanics
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
Fundamentals of Organic Chemistry
Fundamentals of Thermodynamics and Equilibrium
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module will...
Introduction to Practical Chemistry I
This course is an introduction to practical chemistry, involving direct laboratory teaching (with detailed instructions) of a range of basic skills to set foundations for further learning. It includes the teaching of common experimental techniques, use of...
Introduction to Practical Chemistry II
This course follows on from CHEM1051 and teaches slightly more advanced basic skills, with the application of the Semester 1 skills and knowledge. More complex work-ups will be undertaken, with more emphasis on student input (or decision making) in the pr...
Main Group and Transition Metal Chemistry
This module will provide an introduction into the fundamentals of main group and transition metal chemistry, and introduce NMR.
Reactions in Organic Chemistry
Structure and Bonding
Year 2 modules
You must study the following modules in year 2:
Coordination Chemistry
This module will build on the principles of Transition Metal chemistry covered in Part 1. Through developing a molecular orbital approach, you will be taken from the basics of ligand interactions and binding modes to understanding a transition metal's...
General Practical Chemistry I
General Practical Chemistry II
Linear Algebra I
Linear maps on vector spaces are the basis for a large area of mathematics, in particular linear equations and linear differential equations, which form the basic language of the physical sciences. This module restricts itself to the vector space R^n to ...
Multivariable Calculus
This module introduces the main ideas and techniques of differential and integral calculus of functions of two or more variables. One of the pre-requisites for MATH2003, MATH2011, MATH2014, MATH3033, MATH2038, MATH2039, MATH2045 and MATH2040
Quantum Mechanics and Molecular Spectroscopy
Physical Chemistry is concerned with the application of physics to the study of chemical systems. Through physical chemistry one can understand and predict the behaviour of chemical systems, thereby allowing these systems to be optimised. This module prov...
Reaction Mechanisms in Organic Chemistry
Retrosynthesis and Aromatics
Solid State and Organometallic Chemistry
In this module you will learn about the fundamental theory of bonding in solids – band theory, and show how this can be used to understand the optical, magnetic and optical properties of solid phase materials. You will also be taught about X-ray diffracti...
Thermodynamics and Kinetics
Year 3 modules
You must study the following modules in year 3:
Advanced Physical Chemistry
The course deals with the nature of surfaces, both real and ideal, the energetics of adsorption at surfaces and adsorption isotherms, and the charge distribution at the liquid/solid interface. The kinetics of reactions at interfaces, including the role of...
Advanced Practical Chemistry
This module represents an advanced practical course designed to build on the practical skills developed through lab modules undertaken in years 1 and 2 of the Chemistry degree programmes. The course will extend this vital skill by enabling students to un...
Chemistry Literature Project
This module requires students to produce a dissertation under the guidance of a supervisor extending the skills developed in the Advanced Practical module. The dissertation may take the form of a literature review or other extended written report, the pr...
Hilbert Spaces
This module is an introduction to the functional analysis of Hilbert spaces. The subject of functional analysis builds on the linear algebra studied in the first year and the analysis studied in the second year. Initially pivotal in Fourier theory and di...
Partial Differential Equations
Differential equations occupy a central role in mathematics because they allow us to describe a wide variety of real-world systems. The module will aim to stress the importance of both theory and applications of differential equations. The module begin...
You must also choose from the following modules in year 3:
Analysis
The notion of limit and convergence are two key ideas on which rest most of modern Analysis. This module aims to present these notions building on the experience gained by students in first year Calculus module. The context of our study is: limits and co...
Atoms, Molecules and Spins: Quantum Mechanics in Chemistry and Spectroscopy
This module aims to develop an intermediate-level understanding of quantum mechanics, including familiarity with its mathematical formulation. It is intended to bridge the gap between the qualitative, pictorial approach used in the core modules of the fir...
Communicating and Teaching: The Undergraduate Ambassadors Scheme
This unit runs under the Undergraduate Ambassadors Scheme and provides an opportunity for students to act as ambassadors for their disciplines.
Complex Analysis
Complex Analysis is the theory of functions in a complex variable. While the initial theory is very similar to Analysis (i.e, the theory of functions in one real variable as seen in the second year), the main theorems provide a surprisingly elegant, found...
Computational Machine Learning and Optimisation
This module will introduce you to some of the main approaches used for data analysis and machine learning. Students will gain knowledge and understanding of different computational machine learning methods, and gain skills in applying them to analyse dat...
Inorganic Materials Chemistry
Mathematical Biology
Biology is undergoing a quantitative revolution, generating vast quantities of data that are analysed using bioinformatics techniques and modelled using mathematics to give insight into the underlying biological processes. This module aims to give a flavo...
Medicinal Chemistry
Medicinal Chemistry is pivotal in the design, synthesis and evaluation of new medicines, and involves multidisciplinary research at the interface of Chemistry, Biology and Medicine. This module will introduce key molecular concepts and methods in Medicina...
Optimization
Module Contents: This module discusses continuous optimization problems where either the objective function or constraint functions or both are nonlinear. It explains optimality conditions, that is, which conditions an optimal solution must satisfy. It in...
Sustainable Chemistry
Synthetic Methods in Organic Chemistry
Carbon-carbon bond forming reactions lie at the heart of organic synthesis. In this course we will cover methods for carbon-carbon bond formation using carbanions and radicals, and through thermally and photochemically induced pericyclic processes. The si...
Year 4 modules
You must study the following module in year 4:
You must also choose from the following modules in year 4:
Advanced Spectroscopy and Applications
Modern spectroscopic techniques underpin a wide range of chemical and biological research as well as serving as a valuable analytical tool. This module will introduce some of the key principles, tools and techniques that govern spectroscopic measurements ...
Computational Machine Learning and Optimisation
This module will introduce you to some of the main approaches used for data analysis and machine learning. Students will gain knowledge and understanding of different computational machine learning methods, and gain skills in applying them to analyse dat...
Integral Transform Methods
Many classes of problems are difficult to solve in their original domain. An integral transform maps the problem from its original domain into a new domain in which solution is easier. The solution is then mapped back to the original domain with the inver...
Nuclear Magnetic Resonance Spectroscopy
Principles, Techniques and Energy Applications of Electrochemistry
Electrochemistry is an important area of science covering many interesting and important topics of current scientific research. For example, it is key to the development of new power sources (for example new batteries, fuel cells and supercapacitors) as ...
Stereoselective Reactions
Supramolecular Chemistry of Functional Molecules and Materials
This module will explore the fundamental basis of intermolecular interactions and illustrate how these can be exploited to form diverse supramolecular assemblies ranging from small molecules, soft gels and hard extended inorganic solids. The course will p...
X-Ray Crystallographic Techniques, Advanced Main Group Chemistry and Applications
Learning and assessment
The learning activities for this course include the following:
- lectures
- classes and tutorials
- coursework
- individual and group projects
- independent learning (studying on your own)
Course time
How you'll spend your course time:
Year 1
Study time
Your scheduled learning, teaching and independent study for year 1:
How we'll assess you
- coursework, laboratory reports and essays
- dissertations
- essays
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 1:
Year 2
Study time
Your scheduled learning, teaching and independent study for year 2:
How we'll assess you
- coursework, laboratory reports and essays
- dissertations
- essays
- individual and group projects
- oral presentations
- written and practical exams
Your assessment breakdown
Year 2:
Academic support
You’ll be supported by a personal academic tutor and have access to a senior tutor.
Course leader
Peter Birkin is the course leader.
Careers
Your completed project will fulfil the requirements of the Royal Society of Chemistry for the CChem qualification. This prepares you for a career as a professional chemist.
You'll be ready to explore maths and chemistry careers in areas such as:
- analytical chemistry
- programming and computational chemistry
- nanotechnology and other chemical industries
- research in academia
Many of our graduates move on to a PhD qualification, and most stay with the University of Southampton to do so.
You'll also have research and teaching opportunities, and options to branch out into fields such as medicine, pharmaceuticals, law and science journalism.
This chemistry and maths degree is supported by our key skills training, which helps you develop the essential attributes needed for career success.
Careers services at Southampton
We are a top 20 UK university for employability (QS Graduate Employability Rankings 2022). Our Careers, Employability and Student Enterprise team will support you. This support includes:
- work experience schemes
- CV and interview skills and workshops
- networking events
- careers fairs attended by top employers
- a wealth of volunteering opportunities
- study abroad and summer school opportunities
We have a vibrant entrepreneurship culture and our dedicated start-up supporter, Futureworlds, is open to every student.
Fees, costs and funding
Tuition fees
Fees for a year's study:
- UK students pay £9,250.
- EU and international students pay £27,400.
What your fees pay for
Your tuition fees pay for the full cost of tuition and all examinations.
Find out how to:
Accommodation and living costs, such as travel and food, are not included in your tuition fees. Explore:
Bursaries, scholarships and other funding
If you're a UK or EU student and your household income is under £25,000 a year, you may be able to get a University of Southampton bursary to help with your living costs. Find out about bursaries and other funding we offer at Southampton.
If you're a care leaver or estranged from your parents, you may be able to get a specific bursary.
Get in touch for advice about student money matters.
Scholarships and grants
You may be able to get a scholarship or grant to help fund your studies.
We award scholarships and grants for travel, academic excellence, or to students from under-represented backgrounds.
Support during your course
The Student Services Centre offers support and advice on money to students. You may be able to access our Student Support fund and other sources of financial support during your course.
Funding for EU and international students
Find out about funding you could get as an international student.
How to apply
When you apply use:
- UCAS course code: F1GC
- UCAS institution code: S27
What happens after you apply?
We will assess your application on the strength of your:
- predicted grades
- academic achievements
- personal statement
- academic reference
We'll aim to process your application within 2 to 6 weeks, but this will depend on when it is submitted. Applications submitted in January, particularly near to the UCAS equal consideration deadline, might take substantially longer to be processed due to the high volume received at that time.
Equality and diversity
We treat and select everyone in line with our Equality and Diversity Statement.
Got a question?
Please contact our enquiries team if you're not sure that you have the right experience or qualifications to get onto this course.
Email: enquiries@southampton.ac.uk
Tel: +44(0)23 8059 5000
Related courses

Chemical Engineering

Chemical Engineering

Chemistry

Chemistry

Chemistry (Digital Methods and Computational Modelling)

Chemistry (Digital Methods and Computational Modelling)

Chemistry with External Placement

Chemistry with Maths

Chemistry with Medicinal Sciences

Chemistry with Medicinal Sciences

Chemistry with Year-Long Industry Experience

Mathematical Physics

Mathematical Sciences

Mathematics

Mathematics

Mathematics with Actuarial Science

Mathematics with Computer Science

Mathematics with Finance

Mathematics with French

Mathematics with German

Mathematics with Spanish

Mathematics with Statistics

Mathematics, Operational Research, Statistics and Economics

Mathematics, Operational Research, Statistics and Economics
